M.Sc. 1st Semester Practical Examination, 2021 CHEMISTRY

Course Title: Inorganic Chemistry Practical Course Code: CHEM 104C (PR) Course ID: 11464

Time: 2 Hours Full Marks: 40

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as

far as practicable

1. Answer *any five* of the followings:

 $2 \times 5 = 10$

- (a) Why freshly prepared cuprous chloride become green in colour after sometimes?
- (b) What is ligand exchange reaction? Give example.
- (c) What do you mean by inert and labile complexes? Give examples.
- (d) Write down the structure of tetraammine(carbonato- κ^2 O,O')cobalt(III) nitrate complex.
- (e) Define secondary standard. Give examples.
- (f) What do you mean by indicator range?
- (g) What is EBT?
- 2. Answer *any four* of the followings:

 $5 \times 4 = 20$

- (a) (i) What do you mean by disproportionation reaction? Give two examples.
- (ii) Write a balanced chemical equation for the preparation of MnPO₄. 1+2+2=5
- (b) (i) Write down the indicators used in the complexometric estimation of CaCO₃, MgCO₃ and Fe₂O₃ in dolomite by EDTA.
 - (ii) Why EDTA is not use as a primary standard?
 - (iii) Why maintenance of a fixed pH is very importance for the complexometric estimation of metal ions by EDTA? 2+1+2=5

- (c) (i) Write down the structure of xylenol orange and calcon indicator.
 - (ii) Give two examples of the compounds of manganese in which Mn is in its +3 oxidation state. 3+2=5
- (d) Write a balanced equation for the preparation of cuprous chloride. Calculate the % of yield when 1 g of cuprous chloride is obtained from 1.5 g of copper (II) sulphate pentahydrate.
- (e) What is the role of KMnO₄ in the preparation of MnPO₄? Why slow addition of KMnO₄ is recommended in the preparation of MnPO₄. Why 2-3 drops of dil. H_2SO_4 is added while dissolving MnSO₄ in water? 2+2+1=5
- (f) (i) What are alums? Give two examples with molecular formula.
 - (ii) What is water of crystallization?
 - (iii) What are addition compounds?

(1+2)+1+1=5

3. Attempt *any one* of the followings:

 $10 \times 1 = 10$

- (a) (i) How do you prepare 500 mL of NH₄Cl-NH₃ buffer solution of pH 10?
 - (ii) How do you prepare 100 mL of (~M/50) zinc acetate dihydrate solution?
 - (iii) "For the complexometric estimation of Ca²⁺, a small amount of 0.1 (M) Na₂MgEDTA solution may be added to Ca²⁺ solution before titration" Explain.
 - (iv) Write down the principle used in complexometric estimation of CaCO₃, MgCO₃ and Fe₂O₃ in dolomite by EDTA.
 - (v) In a dolomite sample 38 mg Ca^{2+} and 24 mg Mg^{2+} is present. Calculate the amount of $CaCO_3$ and $MgCO_3$ present in the sample. 2+2+2+2=10
- (b) (i) Write a balanced chemical equation for the preparation of chrome alum. What is the role of adding alcohol in the preparation? Why conc. H₂SO₄ is added? What is the colour and shape of crystals of chrome alum?
 - (ii) Write down the structure of hexaammie nickel(II) chloride and bis(dimethyl glyoxime) nickel(II) complex. (2+1+2+2)+(1.5+1.5) = 10